翻訳と辞書
Words near each other
・ Meanbh-chuileag
・ MeAnda – Don
・ Meandarra
・ Meander
・ Meander (1855)
・ Meander (album)
・ Meander (art)
・ Meander (disambiguation)
・ Meander (mathematics)
・ Meander (mythology)
・ Meander Creek (Mahoning River)
・ Meander Creek Reservoir
・ Meander cutoff
・ Mean absolute scaled error
・ Mean airway pressure
Mean and predicted response
・ Mean annual increment
・ Mean anomaly
・ Mean arterial pressure
・ Mean Business
・ Mean Business on North Ganson Street
・ Mean center of the United States population
・ Mean Cheay
・ Mean Chey District
・ Mean corpuscular hemoglobin
・ Mean corpuscular hemoglobin concentration
・ Mean corpuscular volume
・ Mean Creek
・ Mean Creek (band)
・ Mean curvature


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Mean and predicted response : ウィキペディア英語版
Mean and predicted response

In linear regression mean response and predicted response are values of the dependent variable calculated from the regression parameters and a given value of the independent variable. The values of these two responses are the same, but their calculated variances are different.
== Straight line regression ==

In straight line fitting, the model is
:y_i=\alpha+\beta x_i +\epsilon_i\,
where y_i is the response variable, x_i is the explanatory variable, ''εi'' is the random error, and \alpha and \beta are parameters. The predicted response value for a given explanatory value, ''xd'', is given by
:\hat_d=\hat\alpha+\hat\beta x_d ,
while the actual response would be
:y_d=\alpha+\beta x_d +\epsilon_d \,
Expressions for the values and variances of \hat\alpha and \hat\beta are given in linear regression.
Mean response is an estimate of the mean of the ''y'' population associated with ''xd'', that is E(y | x_d)=\hat_d\!. The variance of the mean response is given by
:\text\left(\hat + \hatx_d\right) = \text\left(\hat\right) + \left(\text \hat\right)x_d^2 + 2 x_d\text\left(\hat,\hat\right) .
This expression can be simplified to
:\text\left(\hat + \hatx_d\right) =\sigma^2\left(\frac + \frac\right).
To demonstrate this simplification, one can make use of the identity
:\sum (x_i - \bar)^2 = \sum x_i^2 - \frac\left(\sum x_i\right)^2 .
The predicted response distribution is the predicted distribution of the residuals at the given point ''xd''. So the variance is given by
:\text\left(y_d - \left(+ \hatx_d\right )\right) = \text\left(y_d\right) + \text\left(\hat + \hatx_d\right) .
The second part of this expression was already calculated for the mean response. Since \text\left(y_d\right)=\sigma^2 (a fixed but unknown parameter that can be estimated), the variance of the predicted response is given by
:\text\left(y_d - \left(+ \hatx_d\right )\right) = \sigma^2 + \sigma^2\left(\frac + \frac\right) = \sigma^2\left(1+\frac + \frac\right) .


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Mean and predicted response」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.